Glaucoma drainage devices (GDDs) have become instrumental in the management of glaucoma. The efficacy of these devices compared with more traditional trabeculectomy in lowering IOP was first demonstrated in the Tube Versus Trabeculectomy (TVT) study. Although both procedures were associated with a similar level of IOP reduction and use of supplemental medical therapy over a 5-year follow-up period, the Baerveldt tube (Johnson & Johnson Vision) was more likely to avoid persistent hypotony, reoperation, and loss of light perception than trabeculectomy with mitomycin C.\(^1\)

As with any surgical intervention, GDDs have a potentially wide complication profile, including injection, iritis, hypotony, strabismus, infection, and excess capsular fibrosis.\(^2\) One of the most serious complications, however, is exposure of the tube and/or plate that comprises the GDD (Figure 1). It is estimated to occur in approximately 2.5% to 8.9% of cases\(^3\) and can happen any time after implantation, often 1 to 2 years postoperatively.\(^4\) Tube exposure can lead to vision-threatening endophthalmitis,\(^5\) as the exposed tube can serve as a pathway for organisms to enter the eye from the ocular surface. This article presents five fundamentals that may assist in preventing and managing GDD exposure, should it occur.

1. RECOGNIZE THE CAUSES OF TUBE EXPOSURE

 During the implantation of most GDDs, the native sclera or a patch graft material (such as donor cornea, Tenon capsule, dura mater, pericardium, etc.) is used to cover the anterior aspect of the device. This is followed by closure of the conjunctiva. Early tube exteriorization is often caused by a dehiscence of the suture securing the material that overlies the device. Late-onset tube extrusion, however, is likely related to an erosion of the overlying...

AT A GLANCE

- Glaucoma drainage devices are essential in the management of glaucoma.
- Tube exposure, a complication of glaucoma drainage device implantation, results from the erosion of the overlying patch graft and/or conjunctiva.
- The risk of tube exposure can be decreased by placing the tube superiorly as opposed to inferiorly. An exposed tube should be repaired immediately.

Figure 1. Slit-lamp photographs demonstrating conjunctival erosion over a glaucoma drainage device.
patch graft and/or conjunctiva. This degradation may be due to micro-
movements of the tube with eyelid
blinking or ocular movements. It may
also be related to increased tension
of the overlying conjunctiva and/or
abnormal positioning of the tube.

2. CONSIDER PATIENT RISK FACTORS

A number of potential risk fac-
tors for tube exposure have been
proposed. In a retrospective study,
Netland et al. found the proportion
of patients with intraocular inflam-
mation prior to tube exposure to be
higher than in control patients, which
may suggest an underlying immune
process as a causative factor. In a
retrospective review of 1,073 tube
implants, Muir et al. found female
patients to be at higher risk of tube
extrusion than male patients. The
authors theorized that the smaller
orbital dimensions of women may
lead to increased friction between the
GDD and ocular tissues, leading to
tube exposure. This theory, however,
remains controversial and has not
been duplicated in most other studies.

Prior ocular surgeries, neovascular
glaucoma, increased number of preop-
erative glaucoma medications, and dia-
abetes have also been cited as potential
risk factors for tube erosion; however,
other similar studies did not find the
same associations. The relationship
between age or race and tube exposure
also remains debatable.

3. PRIORITIZE PLACEMENT OVER
MATERIAL

There does not appear to be a sig-
ificant correlation between the type
of GDD utilized and the risk of tube
extrusion. On the other hand,
there remains some controversy as to
whether tube exposure is caused by the
melting of certain types of patch grafts.
Advocates of this theory suggest that
these grafts can thin and dissolve due
to poor integration with the host tissue
and a lack of vascular infiltration.2

However, most studies comparing
patch graft material types do not
show that one material is necessarily
more prone to disintegrating than
another. Levinson et al. found that,
although the choice of patch graft
material approached statistical sig-
ificance (9.2% risk of exposure with
cornea, 7.9% risk with pericardium,
and 0.5% risk with sclera), it did not
reach it (P = .072). The authorsulti-
mately posited that corneal patch
grafts appeared to fail at an increased
rate because the implants were often
placed inferiorly (see below).9

4. IMPLANT SUPERIORLY

Overall, GDDs implanted inferiorly
are more likely to become exposed
than those implanted superiorly.11
This is likely related to the fact that
there is less superficial tissue for
implant coverage inferiorly due to
shorter inferior fornices. This, in turn,
leads to increased tissue tension at
the sutured incisions and wound
dehiscence. Further, the tear film
pools inferiorly and harbors environ-
mental organisms. Thus, patients with
inferior device exposure are believed
to be at increased risk of endophthal-
mitis as there is a more direct conduit
for bacteria to pass into the eye from
the tear film.9

5. REPAIR EXPOSED TUBES
IMMEDIATELY

Exposed tubes should be repaired
immEDIATELY. Typically, repair involves
dissection of the eroded conjunctiva
(Figure 2A), followed by placement
of a dual layer of coverage—first
with a sutured patch graft to cover
the exposed tube (Figure 2B) and
second with a conjunctival auto-
graff (Figure 2C). Surgeons should
consider switching the type of patch
graft material used during the repair
in case an immunologic component
contributed to the initial patch graft
 failure. Free conjunctival grafts or
rotation flaps, double-layer amniotic
membranes, and buccal membrane
transplants may also be used for
superficial coverage in the event of
conjunctival scarring.13

Techniques that involve partial-
thickness scleral flaps, scleral tunnels,
or a combination of both are now
being utilized during initial GDD
implantation (Figure 3) and as a meth-
od of repairing exposed tubes. Ollila
et al. reported a 0% erosion rate after
initial GDD implantation with a scleral
graft (Continued on page 49)
tunnel. Similarly, Lee et al.15 noted a 0% re-erosion rate when exposed tubes were repaired with a split-thickness hinged scleral flap. These techniques are believed to be superior to the use of patch graft materials because the host sclera can act as a vascular bed that releases growth factors and enhances the viability of the tissues overlying the tube.15 Moreover, the tubing is embedded in the patient's own sclera, which tamponades it against the globe and prevents micromotions that may ultimately contribute to tube exposure.15

CONCLUSION

GDDs have become essential in the management of glaucoma. Tube exposure, however, is a potentially vision-threatening complication of GDDs that results from the erosion of the overlying patch graft and/or conjunctiva. The risk of exposure can be decreased by placing the tube superiorly as opposed to inferiorly. Any exposed GDD should be repaired immediately, and the use of a different type of patch graft material and/or a scleral tunnel or flap should be considered.

\begin{itemize}
 \item 10 Smith MF, Doyle IV, Turvey JW. A comparison of glaucoma drainage implant tube coverage. J Glaucoma. 2002;11(2):141-147.
\end{itemize}