Glaucoma remains a major cause of vision loss globally. Advancing age, genetics, and high IOP are all considerable risk factors. With an increasingly aged population, the number of patients with glaucoma is set to increase, and thus glaucoma will continue to be a significant health and economic burden.

Current treatment strategies for glaucoma target only IOP, the principal treatable risk factor. Patient adherence is variable, and many individuals are subject to surgical interventions due to progressive damage. In addition, many patients do not respond to pressure-lowering treatments or progress to blindness despite low IOP.

To date, the search for a treatment that targets retinal ganglion cells (RGCs) and arrests disease progression has been unsuccessful. Neuroprotective treatments for glaucoma are of great therapeutic need, as are new clinical trial paradigms that facilitate translation of candidate treatments from bench to bedside in an expedited fashion.

The key to RGC degeneration: metabolism?

The progressive dysfunction and loss of RGCs (and their axons that make up the optic nerve) are the hallmark features of glaucoma. RGCs are highly sensitive to metabolic fluctuations and sit on a metabolic knife-edge during times of stress that may be exacerbated by aging, genetic impairment, or increased IOP (Figure). During these periods of metabolic stress, the viability of RGCs is reliant on mitochondria and supportive glial cells to maintain cellular homeostasis and bioenergetic needs.

Disease-causing mutations in mitochondrial protein-coding genes are prevalent in the human population.
and are present throughout the majority of cell types in the body. Yet, interestingly, abnormalities in these genes predominantly affect RGCs and present in the form of blinding disorders that, in most cases, have little or no overt extra-ophthallic pathology (eg, autosomal dominant optic atrophy or Leber hereditary optic neuropathy).

Emerging research suggests that a systemic vulnerability to mitochondrial abnormalities exists in glaucoma patients. Genomic analysis has demonstrated altered mitochondrial DNA content and a spectrum of mitochondrial DNA mutations in individuals with glaucoma. These abnormalities are also present systemically in leukocytes, suggesting a systemic susceptibility to metabolic defects. Such systemic susceptibility conspires with elevated IOP to increase glaucoma susceptibility with age, this research suggests (Table 1). Metabolic decline may thus be a critical, and targetable, pathogenic component of glaucoma.

TARGETING MITOCHONDRIA AND METABOLISM

The mechanisms by which mitochondrial defects influence neuronal metabolism and lead to neurodegeneration are a topic of active research and interest. Current research has discovered metabolic dysfunction and mitochondrial abnormalities occurring prior to neurodegeneration in multiple experimental models of glaucoma. Targeting mitochondria and metabolism has shown promise in animal models of glaucoma (Table 2). Importantly, many of the changes discovered in animal models sensitize RGCs, leaving them vulnerable to the insults of elevated IOP.

One such molecule is the essential redox cofactor and metabolite nicotinamide adenine dinucleotide (NAD), which declines in the retina in an age-dependent manner. NAD is well established to be a potent mediator of axonal and neuronal survival following damaging disease-related insults. A key pathway to NAD synthesis in neurons is through the salvage pathway whose input is nicotinamide (NAM), the amide form of vitamin B3.

Recently, NAM has been demonstrated to be low in the sera of patients with primary open-angle glaucoma. In mouse models of glaucoma, dietary supplementation with NAM or intravitreal introduction of gene therapy (Nmnat1, a terminal enzyme for NAD biosynthesis) robustly protects against neuronal metabolic decline and prevents glaucoma. NAM has a long clinical history and a robust safety profile, even at megadoses (up to 12 g/day long-term); therefore, it is an ideal target for neuroprotection in glaucoma, and clinical trials of NAM in glaucoma are under way.

THE PROMISE OF NAM FOR NEUROPROTECTION IN GLAUCOMA

NAM’s widespread availability in health food stores, excellent safety profile, good tolerability, and affordability will all facilitate its rapid

Figure. There is potential for functional vision recovery with neuroprotective treatments at multiple stages during glaucomatous progression. It is becoming increasingly important to understand the early factors that influence retinal ganglion cell health during normal aging and following insults from elevated IOP. Many systemic risk factors predispose retinal ganglion cells to bioenergetic failure, such as advancing age, genetics, and loss of metabolic substrates (Table 1), whereas elevated IOP, neuroinflammation, and hypoxic damage necessitate the initiation of energy-expensive repair processes. A consequence of this process is an induction of compensatory mechanisms that divert energy use from retinal ganglion cell axon potential propagation to repair, initiating retinal ganglion cell degeneration and remodeling. The following degenerative processes, synapse and dendrite pruning, protect injured retinal ganglion cells from excitatory bipolar cell inputs facilitating repair. If compensatory processes permit repair function, then dendrites and synaptic inputs can be restored. If not, then potentially irreversible apoptotic processes are induced. Preventing retinal ganglion cell decline prior to the initiation of apoptosis should be a key factor in designing the next generation of glaucoma neuroprotective treatments. (Figure adapted in part from Caprioli J.)
translation into clinical trials. At least two such trials are currently registered. The first, a crossover study (ACTRN12617000809336) based in Melbourne, Australia, is completed, and the manuscript is under review. The second, a New York–based NAM-pyruvate combination study (NCT03797469) has started recruitment and is underway, with a planned completion date of December 2019. A third Sweden-based study of NAM is planned for 2019 to 2020.

DESIGNING EFFICIENT AND EXPEDITED CLINICAL TRIALS

An ongoing challenge is the time required to conduct clinical trials for neuroprotection in glaucoma. The United Kingdom Glaucoma Treatment Study (UKGTS) demonstrated that, with intensive visual field testing, a change in glaucomatous progression rate could be determined as early as 11 months (when a prostaglandin was compared with placebo).

In a neuroprotective clinical trial, the test agent is assessed with placebo but in the presence of concomitant IOP lowering, a requirement on ethical grounds. Subsequently, longer follow-up periods are required, reducing feasibility and increasing cost. Thus, there is a clear need to develop surrogate clinical markers that provide information on RGC health and accurately predict longer-term progression rates.

We have been exploring whether short-term improvement in inner retinal function as determined by electrophysiography or contrast sensitivity is seen after IOP lowering or in the presence of candidate neuroprotective treatment (ie, NAM). One of the aims of our collective research programs is to more accurately match clinical biomarkers with markers of glaucomatous neurodegeneration between human samples and donor tissue and animal models of glaucoma. This is essential to understanding the pathogenesis of RGC degeneration in glaucoma and will therefore aid in the search for relevant markers of RGC health.

<table>
<thead>
<tr>
<th>Table 1. Metabolic Susceptibilities in Glaucoma Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic Factor</td>
</tr>
<tr>
<td>Complex I</td>
</tr>
<tr>
<td>Complex III</td>
</tr>
<tr>
<td>Complex IV</td>
</tr>
<tr>
<td>Complex V</td>
</tr>
<tr>
<td>Increased mtDNA content</td>
</tr>
<tr>
<td>Other mtDNA mutations and mtDNA haplogroups</td>
</tr>
<tr>
<td>Decreased plasma nicotinamide levels</td>
</tr>
<tr>
<td>Decreased plasma citrate levels</td>
</tr>
<tr>
<td>OPA1</td>
</tr>
<tr>
<td>TXNRD2</td>
</tr>
<tr>
<td>ME3</td>
</tr>
<tr>
<td>VPS13C</td>
</tr>
<tr>
<td>GCAT</td>
</tr>
<tr>
<td>PTC2</td>
</tr>
</tbody>
</table>

Abbreviations: ATP (adenosine triphosphate), OXPHOS (oxidative phosphorylation), mtDNA (mitochondrial DNA), nicotinamide adenine dinucleotide (NAD), rtPCR (real-time polymerase chain reaction), GWAS (genome-wide association study), SNP (single-nucleotide polymorphism), redox (reduction-oxidation reaction), mtRNA (mitochondrial RNA)
References
Mitochondrial biogenesis, energy Model
Multiple targets of metabolic
Component of mitochondria
Likely sirtuins during
NAD salvage pathway
Vis. the possible role of mitochondrial DNA ancestry informative haplogroups.
Obeidan SA. Susceptibility to primary angle closure glaucoma in Saudi Arabia:
congenital glaucoma.
gene sequencing in primary open-angle glaucoma using massively parallel
sequencing identifies novel and known pathogenic variants. Genet Med.
mitochondrial DNA mutations in normotension-glaucoma. Invest Ophthalmol Vis.
identify TDRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-
12. Hoermann AP, Cooke Bailey JN, Cardozo BH, Foxworth NE, John SWM. Mitochondrial
DNA mutations in normal-tension glaucoma.
17. Aung T, Ocaka L, Ebenezer NO, et al. Investigating the association between
OPAN1 polymorphisms and glaucoma: comparison between normal tension and high
with primary open angle glaucoma. Mol Vis. 2011;17:1074-1079.
19. Yu-Wa-Man P, Stewart JD, Hudson G, et al. OPAN1 increases the risk of
identifies TDRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-
mitochondrial genetic variation with primary open-angle glaucoma using gene-set analyses.
identify 68 new loci associated with intraocular pressure and improve risk
24. Williams PA, Harder JM, Foxworth NE, et al. Vitamin B3 modulates mitochondrial
25. Williams PA, Harder JM, Cardozo BH, Foxworth NE, John SWM. Nicotinamide
tional rescue of chronic metabolically stressed optic nerves through respiration.
27. Lee D, Ohn MS, Kim KY, et al. Coenzyme Q10 inhibits glutamate excitotoxi-
city and oxidative stress-mediated mitochondrial alteration in a mouse model of
intravitreal pressure-induced transient ischemia is prevented by coenzyme Q10
mitochondrial-mediated neuroprotection in a rodent model of ocular
30. Lara C, Li G, Lin JB, et al. Resveratrol prevents the expression of
glaucoma markers induced by chronic oxidative stress in trabecular meshwork
31. Zuo L, Khan RS, Li Y, Dine K, Wu W, Shinder KS. SIRT1 promotes RGC survival
32. Pehdan D, Yükel E, Emre E, Cagiltay A, Kuzit Yildiz D. Riluzole and
resveratrol-induced delay of retinal ganglion cell death in an experimental model
33. Parnis V. Electroretinographic assessment of glaucomatous visual dysfunction
during treatment with 0.5% dipropylforskolin (cilostazol): a study of 8 years of follow-up. Doc Ophthalmol. 2002;106(1):91-102.
34. Parnis V, Coppola G, Constantinou M, et al. Evidence of the neuroprotective role of
35. Han YS, Chung Y, Park JM, Yu J. Neuroprotective effect of cilostazol on retinal
36. Ohtsuki T, Fujimoto H, Adachi-Ishii E. Cilostazol has a protective effect on
37. Schummann F, Hyder M, Thaler S, et al. Cilostazol and lithium rescue retinal

THE FUTURE OF NEUROPROTECTION IN GLAUCOMA

With improvement in clinical trial testing and available resources for exploring early degenerative events in glaucoma, in addition to a better understanding of the utility of animal models, we are stepping into the future of neuroprotection in glaucoma. Over the coming year, we will see the first results from the NAM clinical trials, which will inform clinicians whether targeting neuronal metabolism is a viable strategy for protecting the vulnerable RGC in glaucoma patients.

TABLE 2. POTENTIAL TRANSLATIONAL NEUROPROTECTIVE TREATMENTS TARGETING MITOCHONDRIA AND METABOLISM

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Target</th>
<th>Model</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicotinamide</td>
<td>NAD salvage pathway</td>
<td>DBA/2 mouse chronic glaucoma, mouse retinal axotomy model, mouse TNF-alpha inducible neuroinflammatory glaucoma</td>
<td>23-25</td>
</tr>
<tr>
<td>Ketogenic diet</td>
<td>Mitochondrial biogenesis, energy availability through ketone body production</td>
<td>DBA/2 mouse chronic glaucoma, mouse bead model of ocular hypertension</td>
<td>26</td>
</tr>
<tr>
<td>Coenzyme Q10</td>
<td>Component of mitochondria electron transport chain</td>
<td>DBA/2 mouse chronic glaucoma, rat hypertonic saline episcleral vein injection, rat ischemia/reperfusion</td>
<td>27-28</td>
</tr>
<tr>
<td>Resveratrol</td>
<td>Multiple targets of metabolic regulation (AMPK, SIRT1, PGC-1alpha)</td>
<td>Rat hyaluronic acid model, mouse controlled optic nerve crush, pig trabecular meshwork cells</td>
<td>30-32</td>
</tr>
<tr>
<td>Citicoline</td>
<td>Likely sirtuins during neuroprotection</td>
<td>Rat kainic acid-induced retinal degeneration, cultured mouse retina, rat partial optic nerve crush</td>
<td>33-37</td>
</tr>
</tbody>
</table>

JONATHAN G. CROWSTOWN, MBBS, FRCPH, FRANZCO, PhD
Duke-NUS and Singapore Eye Research Institute, Singapore
jonathancrowston@duke-nus.edu.sg; Twitter @jcrowston
Financial disclosure: None

PETE A. WILLIAMS, PHD
Karolinska Institutet and St. Erik Eye Hospital, Stockholm, Sweden
pete.williams@ki.se; Twitter @pete_the_teapot
Financial disclosure: None

32 GLAUCOMA TODAY | SEPTEMBER/OCTOBER 2019

RESEARCH UPDATES